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A minimal Landau gauge is defined by choosing the gauge which minimizes the action 
S,(U) = -C Re tr U, where the sum extends over all links of the lattice, and a minimal Coulomb 
gauge is defined analogously. The positivity of the second variation of this action at a minimum 
determines the lattice Gribov region. It is shown that if an external “magnetic” field H is 
coupled to the color spins then, in the infinite-volume limit, the color magnetization M(H) 
vanishes identically for all H. Consequently all gluon correlation functions vanish at zero- 
momentum. This implies a maximal violation of reflection positivity for gluons in a minimal 
Landau gauge. A confinement mechanism is hypothesized whereby color-singlet gauge-invariant 
states are stabilized by reflection positivity which gives them a real mass, whereas color 
non-singlet objects are unstable because they are not gauge invariant and consequently develop a 
complex mass, which is observable, in principle, in jet events. 

1. Introduction 

Wilson’s lattice gauge theory provides a gauge-invariant discretization of quan- 
tum chromodynamics. It is suitable for numerical calculations of the correlation 
functions of gauge-invariant quantities, from which the hadron spectrum may be 
deduced. It also provides a natural explanation for the confinement of external 
quarks, for Wilson [l] showed that in the strong-coupling limit the Wilson loops 
satisfy an area law, which implies a linearly rising potential energy between 
external quarks. The issue of the confinement of gluons is generally disposed of by 
holding to the philosophy that one should only calculate gauge-invariant quantities. 
However the prominence of gluon jets 121 in elementary particle scattering requires 
us to understand both the existence of gluon jets and the confinement of gluons*. 
High-energy gluon jets are well described by perturbative QCD, a gauge-fixed 
theory of unconfined, massless gluons that are asymptotically free. One would like 

*Research supported in part by the National Science Foundation under grant no. PHY 87-15995. 
*For the current status of jet physics see the first of ref. [2] and for theoretical calculations see the 

second of ref. [2]. 
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to see continuum perturbative QCD emerge as a limiting case of lattice gauge 
theory. 

In virtue of the asymptotic freedom relation go* = 26 ln(t/a), the continuum 
limit t/a -P 00 is the weak-coupling limit g, + 0. Here 5 is a physical correlation 
length, a is the lattice spacing, g, is the unrenormalized coupling constant, and b 
is a positive constant. Weak-coupling calculations on the lattice require gauge 
fiing. In a subsequent article, we shall describe lattice weak-coupling perturbation 
theory in the Landau gauge. In the present article we shall derive a number of 
rigorous bounds which hold in the Coulomb and Landau gauges. In particular we 
shall show that the zero-momentum lattice gluon propagator vanishes in the 
Landau or Coulomb gauge, and hypothesize a confinement mechanism suggested 
by this result. 

We consider two classes of gauge-fixings on the Wilson lattice, a minimal 
Landau gauge and a minimal Coulomb gauge. These are defined by making a 
gauge transformation which minimizes 

where 
(l.la) 

(l.lb) 

Here, for a minimal Landau gauge, the sum extends over all links L of the lattice 
and, for a minimal Coulomb gauge, the sum over all links L that lie within a 
time-slice. The minimal Landau gauge approaches the renormalizable continuum 
Landau gauge which is successful in describing gluon jets. 

We shall prove: In either a minimal Landau or Coulomb gauge, and in the 
infinite-volume limit, the lattice gluon propagator B(k) vanishes at k = 0. The result 
is quite general and holds in any number of dimensions and for any gauge-invariant 
action (after it is gauge fixed). This is in striking contrast to zero-order perturba- 
tion theory according to which the gluon propagator diverges like l/k* at k = 0, 
and in yet stronger contrast to a theory of confinement according to which a 
linearly rising quark-quark potential comes from a gluon propagator that behaves 
like l/k4 at k = 0 [3]. 

This result holds for a gauge fixing which is either a local or an absolute 
minimum of the action (l.la>, or some weighted average of minima. This includes 
numerical gauge fixing by an algorithm which may lead to a relative rather than an 
absolute minimum. 

It is possible to give an analytic representation of the gauge in which the 
absolute minimum of the action (l.la) is chosen [4]. The expectation value of a 
gauge-invariant observable F(U) is given by 

(F) =N/dUexp[-S(U)]F(U), (1.2) 



D. Zwanziger / Lattice gluon propagator 129 

where S(U) is the Wilson action. We have 

(F) =N/dUdgexp[ -S(U) -M~s,(u~)]F(u)/z(u), 

where 

Z(U) =/dgexp[-M2S,(U”)]. (l-3) 

By the gauge invariance of dU = dug, and of S(U) = S(UB), and similarly for F(U) 
and Z(U), this may be written 

(F) =N/dUcxp[ -S(U) -M2S,(U) - W(U)]F(U). (1.4) 

Here W(U) = In[ I(U)] is a gauge-invariant but non-local action. In the limit 
M2 + CQ, this gives the absolutely minimal Landau gauge. 

The bounds which will be obtained are a consequence of the existence in the 
lattice Landau and Coulomb gauges of the analog of the Gribov horizon of 
continuum gauge theory. As in the continuum theory, gauge orbits bunch up to 
pass within the narrow compass of the Gribov horizon, and one may fix a gauge 
entirely within it. The horizon is very close for infrared modes which strongly 
suppresses them. In particular, the constant component of the gauge field on a 
hypercubic lattice of edge L is bounded by 

V-’ CA,(x) < 2tan(7r/L), 
+ 

(1.5) 

where V = LD and 

A;(x) = -tr(f”[U,(x) -U,‘(x)]). (1.6) 

(Conventions are stated at the beginning of sect. 2.) Observe that in the infinite- 
volume limit (L + 03>, the color magnetization V-‘C,A(x) vanishes in every 
configuration, so that, if a source HC,A(x) is added to the action, the mean color 
magnetization, M(H) = (V-‘C,A(x)), vanishes identically in H. Consequently, 
the color susceptibility x(H) = 8M(H)/8H, and all higher derivatives vanish, 
which is the statement that all correlation functions vanish at zero momentum in 
the infinite-volume limit. We shall also obtain bounds on other Fourier compo- 
nents of A(x). Some of the results presented here have been given elsewhere in 
condensed form [5]. 

Although we mainly use the language of gauge-fixing, it is possible to give a 
gauge-invariant formulation of the results obtained here. To do so, one turns 
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formula (1.4) around and uses it to assign a gauge-invariant observable F(U) to 
any gauge non-invariant quantity F,,(U) + F(U) according to 

F(U) =jdgexp[-M2SL(US)]F,i(Ug)/l(U). (1.7) 

One has (F) = (F”i>, and (F) may be evaluated using the gauge-invariant Wilson 
formula (1.2). For any F”,(U), one may in principle calculate F(U) in a hopping 
expansion, with hopping parameter M2, so that F(U) gets expressed as a sum of 
Wilson loops, F(U) = C(Wilson loops). If this is done for the gluon bilocal, 

4Retr[r”UP(x)]Retr[rbUV(y)] + [ALAR] = ~(Wilsonloops), 

(1.8) 

where each Wilson loop passes through the links (x, CL) and ( y, u), then the bound 
on the propagator in the minimal Landau gauge becomes a bound on the 
expectation value of the sum of Wilson loops. (Is the destructive interference 
implied by the vanishing of the zero-momentum gluon propagator, eq. (1.10) 
below, related to the Wilson area law?) Because the absolute minimum is invariant 
under a global gauge transformation, a slight modification of formula (1.7) is 
required to obtain a non-vanishing gauge field at a single link namely 

‘dgexp[-M’s,(Ug)](-Z)Retr[f’Ug(x)]), 

(1.9) 

where the prime means that g, = g(x,) = 1 is not integrated over. This field 
undergoes a global gauge transformation by g, when U undergoes a local gauge 
transformation. 

COLOR CONFINEMENT AND REFLECTION POSITIVITY 

The reader who prefers proven results unadorned by speculation is advised to 
proceed directly to sect. 2 and the succeeding sections, for in the remainder of this 
section, we shall discuss a speculative but simple hypothesis for gluon and color 
confinement. It is suggested by the vanishing of the zero-momentum gluon propa- 
gator 

9(O) = jdDx(A(x/2)A(-x/2))=0. (1.10) 
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Here, for simplicity, we have written only the (unproven) continuum analog of the 
correct lattice relation given in sect. 5. If reflection positivity held for the gluon 
field, then the integrand would be non-negative for each X. Thus either the gluon 
correlation function vanishes identically in the Landau gauge, or reflection positiv- 
ity is maximally violated in the sense that the gluon correlation function is positive 
and negative in equal measure. A gauge non-invariant field need not satisfy 
reflection positivity, for in lattice gauge theory one proves only that the states 
created by local gauge-invariant fields satisfy reflection positivity 161. In formula 
(1.4), the gauge non-invariant action S,(U) destroys the proof of reflection 
positivity, as would the gauge-invariant but highly non-local field defined in eq. 
(1.9b) because its support extends to both sides of any reflection plane. Thus it is 
not surprising that reflection positivity is violated by the gluon correlation function, 
although the maximal violation may be unexpected. 

Reflection positivity is a condition which assures that a euclidean or statistical 
mechanical system has a consistent quantum-mechanical interpretation. Its failure 
for the lattice gluon field in the Landau gauge implies that it has a complex mass 
spectrum, or residues that are not positive, or both [6]. Here we have a perfect 
set-up to accommodate gluon jets without gluons. It is sufficient that the states 
created by the lattice gluon field in a minimal Landau gauge have a complex mass. 
This is appropriate for particles that decay. Color-singlet states are immune to 
infection by a complex mass, and consequent decay and confinement, because the 
principle of reflection positivity guarantees that local gauge-invariant fields have a 
real mass spectrum. 

Concrete calculations are required to establish whether the hypothesis of a 
complex gluon mass is realized. In appendix C, a simple lattice model with an 
approximate lattice Gribov horizon is defined and solved. One finds a pair of 
complex conjugate masses. To understand how this comes about, notice that with 
8 *A = 0, we may write A, = dPUPV, where UP, = -DVP, is a relativistic Hertz 
potential that satisfies &UP, + a,& + aVnA, = 0. (Again, for simplicity, we have 
written only the continuum analog of the correct lattice relations.) In terms of 17, 
the free action V-‘Ckk21a(k)12 is given by I/-‘&(k*)*lrr(k)l* and the ellipsoidal 
bound, V-‘Ckla(k)12/k2 <cl/, proven in appendix B, is given by V-‘Cklrr(k)12 < 
cV. This bound effectively introduces a mass term for the n field, so that n has 
the propagator [(k*)* + ~1~‘. This gives the gluon propagator 

(1.11) 

which corresponds to imaginary m* = +iy’/*, and mass m = (1 f i)2-1/2y’/4. In 
sect. 6 we suggest numerical investigations to verify the hypothesis that in the 
minimal Landau gauge the gluon has a complex mass. 
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The violation of reflection positivity by the gluon field in the Landau gauge 
should be viewed less as the consequence of a specific dynamics, than as a genera1 
feature of statistical mechanical spin systems which will occur unless some specific 
property such as gauge invariance prevents it. Indeed for gluon fields, the vanish- 
ing of 8(O) holds for any gauge-invariant dynamics, once it is fixed in the Landau 
gauge. By contrast, the area law for Wilson loops is a specific property of the 
plaquette action that does not hold when dynamical quarks are present. It is to be 
expected that other color non-singlet fields such as the quark field also acquire a 
complex mass and get confined because they are not protected by gauge invari- 
ance. 

The first person who obtained a gluon propagator with a complex mass was 
Gribov [7], in his famous paper of 1978. In an approximate calculation in contin- 
uum gauge theory he obtained the gluon propagator (1.11). In 1986, Sting1 [8], 
without explicitly introducing the Gribov horizon, adopted the same gluon propa- 
gator, and also a more genera1 one, as an ansatz for a non-perturbative solution to 
the Schwinger-Dyson equations. He pointed out that the complex mass implies an 
unstable particle with energy and lifetime given, at large 3-momentum k, by 

T(k) = Ikly-‘I*[1 +8-‘~k-~+ . ..I. 

The lifetime grows linearly with k, and the leading correction to the energy is of 
order y/k4 instead of m*/k*, as it would be for a massive particle. Sting1 
observed, “These relations, which reflect ‘naive’ asymptotic freedom, are in 
qualitative agreement with observation: when endowed with larger momenta the 
gluonic excitations grow increasingly particlelike, and ‘jets get jettier’.” He added, 
“ . . . at gluon energies admittedly exorbitant, E = lo’* GeV, these excitations would 
travel over distance of millimeters during their intrinsic lifetime, and could in 
principle be intercepted by macroscopic detectors before hadronization.” In 1987, 
Mandula and Ogilvie [9] performed a Monte Carlo calculation of the gluon 
propagator in SU(3) lattice gauge theory on 43 x 10 and 43 X 8 lattices for three 
values of p in the scaling region. They used a minimal Landau gauge (for which 
the result derived here holds), calculated the gluon propagator in position space, 
fitted it with a decaying exponential as if to determine the mass of an ordinary 
stable particle, and observed, “A striking aspect . . . is that for each p the effective 
mass grows with separation. Such behavior is only possible if the spectra1 function 
describing the gauge potential propagator is not positive definite.” This behavior is 
also possible if the gluon mass is complex. More recently a perturbative scheme in 
continuum gauge theory propagator has been proposed [lo], with zeroth order 
gluon as given in eq. (1.11). 
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For the Coulomb gauge, which is a physical gauge in the continuum theory, it is 
shown in sect. 5 that the vanishing of the equal-time gluon correlation function at 
zero spatial momentum implies that the zero spatial momentum gluon field 
annihilates the vacuum. This is a literal statement of infrared slavery. It is as if the 
gluon has an infinite mass in the Coulomb gauge. This gives a clear and simple 
picture of gluon confinement, but it does not appear to be of help for understand- 
ing gluon jets, or the confinement of other color non-singlet states. 

The organization of this article is as follows. In sect. 2 we consider the first and 
second derivatives of the action (l.la>. At a stationary point of the action, the 
condition A .A = 0 is satisfied, where A *A is the lattice divergence of A. The 
matrix of second derivatives defines the lattice Faddeev-Popov matrix, M(U), 
which is positive at a minimum of the action, so M(U) is positive in a minimal 
Landau or Coulomb gauge. It is shown that M(U) has the following special 
structure, M(U) = K(A) + M,(U), where M,(U) is negative for all II, and K(A) 
depends only on A(x), defined in eq. (1.6). Consequently K(A) is a positive matrix 
in a minimal Landau or Coulomb gauge. (This is theorem 2.1.) Moreover K(A) is a 
naive lattice analog of the continuum Faddeev-Popov operator (-a* -A *a), with 
derivatives replaced by lattice differences. Here A acts in the adjoint representa- 
tion. Methods of proof developed for the continuum theory can be extended to the 
finite hypercubic lattice [ll-161. The region 0 in A-space, defined by the 
condition that K(A) be positive, is convex and bounded in every direction [ill. A 
bound on the Fourier components a(k) of A(x) of the form la(k)1 ~a(k)V, 
where a(k) vanishes with k is established in appendix A (theorem A.l). An 
ellipsoidal bound on 0 is proven by the method of ref. [12]* in appendix B 
(theorem B.l). In sect. 3 it is shown that these bounds imply bounds on W(J) the 
generating function of connected correlation functions (theorem 3.1). In sect. 4, a 
constant source J(X) = H, is considered, so W(H) is the free energy of a system of 
color spins coupled to an external magnetic field. It is proven, as a special case of a 
more general bound (theorem 4.1) that the free energy per unit volume vanishes 
identically in the infinite-volume limit 

w(H) =lim,,,,W(H)/V=O. (1.12) 

This implies that the color magnetization M(H) = cYw(H)/c3H, the susceptibility 
x =aM/aH, and all h ig h er derivatives vanish identically, which is the statement 
that all correlation functions vanish at zero momentum (theorem 5.1). In sect. 5, it 
is proven that the zero-momentum component of the gluon field in the Coulomb 
gauge annihilates the vacuum (theorem 5.2a), and that either the zero spatial 
momentum Landau-gauge gluon propagator vanishes or reflection positivity is 

*The paradox pointed out in ref. [12] that the continuum ellipsoidal bound contradicts the 
perturbative renormalisation group is resolved by the vanishing of the renonnalisation constant. 



134 D. Zwanriger / Lattice gluot~ propagator 

maximally violated in the Landau gauge (theorem 5.2b). In appendix C, a simple 
lattice model is defined and solved. Its two-point function is a lattice analog of the 
propagator (1.11). In sect. 6 we propose some numerical studies to test the 
hypothesis that gluons have a complex mass in a minimal Landau gauge. 

2. Linear matrix bound on Landau and Coulomb lattice gauge fields 

Let the sites of a D-dimensional periodic hypercubic lattice of integer edge L 
and volume V= LD, be labelled by D-dimensional vectors xP, p = 1,. . . , D with 
integer components, xP = 1,. . . , L. Denote by UP(x) the element of the SU(N) Lie 
group associated with the link from x to x + e,, where e, is a unit vector in the 
positive (u. direction, and U@(x) = V,<x + Le,,), for periodicity. The local gauge 
transform Us of a gauge field configuration U = (U’(x)) is defined by 

U;(x) =g-‘(x)U,(X)g(x + eJ, (2.1) 

where g(x) is an element of the unitary group associated to the site x. The action 

S(U) = c [l-N-’ RetrIl,(x)], (2.2) 

where the sum extends over all links, is a gauge-dependent quantity which 
approaches half the Hilbert norm llA112 of the gauge potential A in the naive 
continuum limit. For a given gauge configuration U, the gauge is fixed by making a 
local gauge transformation g = {g(x)}, where g is either a local or absolute 
minimum of the action on the orbit through U defined by 

We call the resulting gauge choice “a minimal Landau gauge” if D is the 
space-time dimension of a euclidean lattice gauge theory, and “a minimal Coulomb 
gauge” if D is the spatial dimension of a CD + 1) euclidean lattice gauge theory, 
and a minimum of the action (2.3) is chosen on each time-slice. 

Consider the one-dimensional subgroup of the local gauge group defined by 

g(7) = {&,x)1 = {expbWlL (2.4) 

Here w(x) is an element of the local Lie-algebra, 

w(x) = t%J”( x), w(x) = -W+(X)) (2.5) 

and the N-dimensional anti-hermitian matrices ta satisfy the Lie algebra commu- 



D. Zwattziger / Lattice ghrott propagator 135 

tation relations in the fundamental representation, 

[t”, t”] = pbctc, t”= -tat, P-6) 

normalized to tr(t”t’) = -Pb/2. A summation over repeated color indices is 
understood. For a fixed gauge-field configuration V define the function 

We have 
S(T) = &(g(4) * (2.7) 

~S(T)/~T= -N-l C Retr{[o(x+e,) -o(x)]uJx)}. 
1.P 

w-9 

a*S( T)/c~‘T* = -A’-’ c Re tr( [ o*( x+e,) -2w(x+e,)w(x) +w*(x)]UJx)). 
L./l 

where U = Vg, and we have used the cyclicity of the trace. At a stationary point of 
the action S,(g), we have &S/a7 = 0, 

xRetr(w(x)z[U@(x-e,) -(i,(x)]) =O. 
.v w 

(2.10) 

Since this must vanish for any g’(x), we conclude that at a stationary point of the 
action 

C[A;(x) -AE(x-e,)] =O. 
CL 

(2.11) 

Here we have introduced the real variables 

A;(x) = -tr(P[UJx) -U:(x)]), (2.12) 

which will be used in the rest of this article. In the continuum limit, A(x) 
approaches the unrenormalized gauge connection g,A,, where g, is the unrenor- 
malized coupling constant and A, is the unrenormalized canonical field. Eq. (2.11) 
expresses the vanishing of the lattice divergence of A, A .A = 0. This condition 
defines a hyperplane in A-space which we call r. 

The second derivative of the action defines the quadratic form 

(w,M(U)u) = C tr(-[w(x+e,) -o(x)]‘[UJx) +U,‘(x)] 
.c,I1 
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where the real symmetric matrix M(U) is the lattice Faddeev-Popov operator. Let 
R be the subspace of r where M(U) 2 0. (This condition means that (w, MU) is 
non-negative for all w.) This set includes all U = Vg which are relative or absolute 
minima of the action S,(g) on all gauge orbits, and thus all minimal Landau or 
Coulomb gauge fields. By analogy with the continuum theory, we call R the lattice 
Gribov region. On a finite lattice, each gauge orbit is compact, and the action 
S,(g) is a bounded function, so there is at least one minimum on each orbit*. 
Therefore R contains a fundamental modular region or physical configuration 
space (i.e. a representative of each gauge orbit) A, A co. 

It is convenient to decompose A4 as 

where the real symmetric matrix K(A) is defined by 

(w,K~) = C Retr(--2[w(x+e,) -o(x)]* 
X.F 

+[W(X+ep)rW(X)][u~(X) -qJw]), 

(W,Ktd) = c (~[w”(x+eJ -Wa(X)]*+f’bcgY(X+e~)A1(X)Oc(X)). 
X,P a 

(2.15) 

and depends explicitly only on the variables A. In fact K(A) is linear in A. The 
difference M, = M - K, given by 

(w,M,w) = - C tr([o(x+e,) -O(X)] 
XVP 

x[l-u~(x)][~-u~(x)][w+(x+~,)-w+(.)]}, (2.16) 

is manifestly negative for all U, M,(U) < 0. Because the Gribov region 0 is 
defined by the condition M(U) 3 0, it follows that K(A) = A4 - M, is a positive 
matrix, K(A) 2 0, for all A in R. Call 0 the subset of r (the hyperplane 
A *A = 0) where K(A) > 0. We have established: 

Theorem 2.1. Let A be a fundamental modular region, let 0 be the set of 
relative and absolute minima of the action (2.3) on each orbit (which includes the 

*See ref. [I31 for a proof of the corresponding continuum statement. 
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minimal Landau or Coulomb gauge fields), let KU) be the real symmetric matrix 
defined by the quadratic form (2.154 and let 0 be the region defined by the two 
conditions 

A*A=O (2.17a) 

K(A) 30, (2.17b) 

where A$) is defined in eq. (2.5). Then the sets so defined are related by the 
inclusions 

ncnco. (2.18) 

We do not have an explicit description of the fundamental modular region A, 
and the characterization of the lattice Gribov region R by the condition M(U) > 0 
is not transparent. On the other hand it is a simple matter to obtain bounds on 0, 
because K(A) is linear in A. In other sections of this article we shall obtain 
bounds on 0, that is to say, bounds on all A in 0, which come from these two 
conditions alone, although there are further restrictions on A&x) which come 
from the compactness of the configuration space. (Recall that by its definition, eq. 
(2.12), A$x) is a component of an element of the Lie group, not of the Lie 
algebra.) The advantages of proceeding in this way are: (i) the intricacies of the 
non-linear configuration space are avoided, (ii) it turns out that these conditions 
are very restrictive, and (iii) in the continuum limit, 0 approaches 0, so if one is 
interested in the continuum limit only, nothing is given up by considering 0 
instead of R. 

The two condition (2.17) are isomorphic to the characterization of the contin- 
uum Gribov region, with continuum derivatives replaced by lattice differences. 
Consequently the proofs of familiar results on the continuum Gribov region may 
be extended to proofs of the same results for the lattice region 0 in terms of the 
variable A. In particular, 0 possesses the following three properties [12]: (1) 0 
includes the origin, A = 0. (2) 0 is convex, or in other words, if A, and A, are in 
0, then CYA, + (1 - alA, is in 0, where 0 <(Y < 1. (3a) 0 is bounded in every 
direction, or in other words, for any A # 0, there is a positive number A such that 
AA lies outside of 0. It is possible to replace (3a) by a stronger property namely: 
(3b) 0 is included in an ellipsoid E, defined in eq. (B.20), and we have 

AcflcOcE. (2.19) 

The main technique to bound 0 is variational calculation. Choose any vector w. 
If (w, K(A)w) is negative for some A, then that A lies outside 0, and moreover, 
so does AA for all A > 1 because 0 is convex. This technique is used in appendix 
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A to obtain a bound on the Fourier components of all A in 0, and in appendix B 
an ellipsoidal bound on 0 is established. 

We conclude this section with an example of a lattice configuration which, 
though far from the continuum, has a gauge copy within the Gribov horizon that 
approaches a typical continuum configuration as the size of the lattice grows. A 
well-known symmetry of the Wilson action is the transformation U + U’ where U’ 
is obtained from U by multiplying all links that cross a fured time-slice by an 
element of the center Z of the group. This lattice symmetry has no continuum 
counterpart. Take a hypercubic lattice of edge L, gauge group SU(2) whose center 
is Z = { f l}, and label coordinates by x = (t, x), where f =x0. Let the configura- 
tion u = U’(t, x) be obtained from the vacuum configuration UJf, x> = 1 by the 
above-mentioned symmetry transformation applied to the t = 0 hyperplane, so 

U;(t,x) = -1 for f =p =0, 

u;<t,x> = 1 otherwise. 

All Wilson loops have the value 1, except Polyakov loops (those that wind around 
the torus in the zero-direction an odd number of times) which have the value - 1. 
This coniiguration may be shown to be gauge equivalent to u” defined by 

U;( c, x) = exp(27itJL) for p = 0 

qr,x> = 1 otherwise, 

as one would expect because all Wilson loops have the same value in configura- 
tions u and U”. It is not hard to show that U” = U’* is an absolute minimum of 
S,,(g). Moreover 

AF(t,x) =2sin(sr/L)6:62, (2.20) 

approaches a typical continuum configuration on a large lattice. The lattice 
Faddeev-Popov operator M(U”), defined in (2.13), is given by 

(M0(x))“=c0s(7i/L)[2o”(x) -d(x+e,) -d(x-e,)] 

-sin(7r/L)~“~~[d(x+e,) -0=(x-e,)], 

where cab’ is the anti-symmetric symbol. Because M(U”) is independent of x, all 
eigenvectors may be found by lattice Fourier transform. The wave function 

w”(x) = exp(27rir,/L)(S,., +iS,,J 
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is an eigenfunction of M(U”) belonging to the eigenvalue 0, and all other 
eigenvalues of M(U”) are positive. Thus the configuration U” is actually a gauge 
copy of U’ that lies on the boundary of the Gribov region R. On large lattices, the 
configuration (2.20) approaches a bound, obtained in appendix A, on all A in 0, 
namely 

V-‘l~A,(x)142tan(~/L). (2.21) 

3. Two bounds on the generating function of connected correlation functions 

In this section we shall derive two bounds on the generating function of 
connected correlation functions W(J), which follow from the two variational 
bounds on 0 which are derived in appendices A and B. 

The gluon propagator B(k) in momentum space is defined by 

(A:( x)&(O)) = V-' C0,,( k) 8" exp( ik ox) 
k 

where P,,(k) is the transverse projector 

qAk) = qL” - sin( k,/2)sin( k,/2) 
I 

C sin’( kJ2) . 
A 

The bound (A-7), la:(k)1 go,(k)V, on the Fourier components a(k) of A(x), 
defined by the expansion (A.2), which holds in a minimal Landau or Coulomb 
gauge, gives a bound on 

namely 

a,,( k)P = v-y l$( k)aZ( -k)) (3.lb) 

0,,(k) Q 0-i (k)V (nosumonp). (3-2) 

Similarly the ellipsoidal bound (B.2Oc) gives the bound 

V-’ ~0,,,(k)/v;(k) <4DN, 
k .P 

(3-3) 

where the semi-major axis v,,(k) is given in eq. (B.20a). The quantities v,,(k) and 
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a,(k) have the infinite-volume limit 

lim v,‘(k) = A, ~os-~(k,/2), 
L -4 m 

lim &J(k) = 2A, cos-‘( kJ2), 
L-+m 

A,=4Csin2(k,/2), 
/1 

so that in the infinite-volume limit the bound (3.3) becomes 

(27r) -7 dDk9( k)T,/A, Q 4DN, 
-7T 

(3.4a) 

(3.4b) 

(3.4c) 

(3.5a) 

where the momentum k, is a continuous angular variable in the Brillouin zone 
-n-<k,grr, and 

TV = c [ 1 - 4( A,)-’ sin2(k,/2)]cos2(k,/2). 
P 

(3.5b) 

The fact that a(k) and v(k) are both proportional to Ikl at low k in the 
infinite-volume limit suggests that there may be a strong bound on 0(k) at low k, 
although the bound (3.2) is of no use in the infinite-volume limit because of the 
explicit power of the volume V. However we shall gain a power of V by deriving a 
bound on the generating function of connected correlation functions given by 

Z(J) =/dUp(U)exp(J,A(U)). (3.6) 

Here A(U) is transverse and lies in 0, p(U) is any positive normalized probability 
distribution, J(X) is a source for A(U), 

(J,A) = c J:‘(x)A$r) 
.\’ , p , b 

= V-’ c jj(k)ai( -k). 
k3p.h 

(3.7) 

where j(k) is defined as in eq. (A.2). This expression for Z(J) is quite general and 
includes possible coupling to quark or other fields which are integrated out. In the 
Coloumb gauge, one is calculating spatial correlations within a given time-slice, 
and all link variables that do not lie within the time-slice are also integrated out. 
We take the AZ(x) as the variables of integration and sum over possible additional 
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variables which may be required to label gauge-fixed configurations U, so the 
generating function takes the form 

Z(J) =/dAp’(A)exp (3.8) 

where dA is the Cartesian measure, and p’(A) is some positive normalized 
probability distribution, whose support is contained in 0. The bound (A.7) on the 
Fourier coefficients a(k > gives 

Z(J) g/dAp’(A)exp c lji(k)la,(k) 9 
k,&l..b 1 

(3.9) 

because the probability is normalized to unity. 
By the Schwartz inequality and the ellipsoidal bound (B.20), we have 

(J, A) = (VJ, v-‘A) < IIVJII lb-‘All Q IIVJII [4DN( N2 - l)v]“*. (3.10) 

The operator V, defined in eq. (B.20) in a momentum basis, is not invertible 
because it vanishes for k = 0, so this inequality holds only for all sources J with 
vanishing zero-momentum component. From the definition (3.6) this bound im- 
plies 

Z(J) ~exp(llvJII[4DN(N*- l)V]“*) [j(O) =O]. (3.11) 

We have established: 

Theorem 3.1. In a minimal Coulomb or Landau gauge, the generating function 
of connected correlations W(J) = In Z(J) satisfies the bounds 

W(J) Q c l$‘(k)b,(k) y 
k,p,b 

(3.12) 

W(J) Q [4DN(N* - 1)v]“211vJII [i(O) = 01 y (3.13) 

where a,(k) is defined in eq. (A.7) and v is defined in a momentum basis in 
eq. (B.20). The Fourier components j(k) of the source J(X) are defined as in 
eq. (A.2). 
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4. Vanishing of color magnetization on the infinite lattice 

In this section we shall prove that the lattice gluon propagator vanishes at k = 0. 
Take the source 

J,“(x) =H:‘cos(k*x), (4-l) 

which may be interpreted as a spatially modulated “magnetic” field which is 
coupled to the color spins A:(x). For this source we write 

W(H,k) = W(J), (4.2) 

so W(H, k) is the analog of the free energy of the spin system in a magnetic field. 
On a finite lattice W(H, k) is an analytic function of H. It satisfies 

W(O,k) =0, (4.3) 

because the probability is normalized, and 

W”(H,k) 20, (4.4) 

where W” is the matrix of second derivatives of W, because this quantity repre- 
sents the connected correlation function in the presence of the source. These 
relations imply that W(H, k) is a positive convex function with a unique minimum 
at H = 0. Thus, from the bound (3.121, with j:(k) = j$-k) = HiV/2, one has 

(4.5) 

or 

O<w(H,k)< CW,hla,(k), (4.6) 
I.r.b 

where 

w(H,k) = W(H,k)/V, (4.7) 

is the analog of the free energy per unit volume. The last inequality holds at all 
volumes V and hence it holds also in the infinite-volume limit where a,(k) has the 
form given in eq. (A.8). We have proven: 

Theorem 4.1. In the infinite-volume limit the free energy per unit volume 
satisfies the bound 

o < wm( H, k) < (2&)“* c If$‘lcos-‘(k,/2) 3 
M.b 

(4.8) 

where A, = 4C, sin*(k,/2>. 
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We arrive at the remarkable result that for a constant magnetic field, k = 0, the 
free energy per unit volume w,(H) = w&f, 0) vanishes identically for all H, 

w&(H) = 0. (4.9) 

The system does not respond at all to a constant magnetic field coupled to the 
color spins. The magnetization M(H) = dw,(H)/SZ, and susceptibility, x(H) = 
&‘M(H)/dH, vanish, together with all higher derivatives. It is as if the constant 
color degree of freedom does not exist. 

To see that this is the correct interpretation, we return to the bound la(k>l Q 
a(k)V for all A in 0. For k = 0 this reads 

V-‘CA,(x) <a(O) =2tan(7r/L), 
x 

(4.10) 

or, in words, the average color spin is less than 2 tan(r/l) for all configurations in 
0. In the infinite-volume limit L + CQ, and the mean color spin vanishes for all 
configurations in 0. 

5. Lattice gluon propagator 

The magnetic susceptibility is the two-point function at zero momentum, so the 
vanishing of the susceptibility is equivalent to the vanishing of the gluon propaga- 
tor at k = 0. [To see this, observe that the contribution to W(J) which is quadratic 
in J:(x) = Hcos(k *x), with p and b fixed, is given by 

W’2’(H,k)=(H2/2)&os(k*x)cos(k*y)W;;))bb(x-y) 
X?Y 

=(f~Z~V/4)~cos(k*x)W~~)~~(x) (nosumonbandp) 
x 

d2’( H, k) = Wt2’ (H,k)P’= (H2/4)0Jk) 3 

where SZf,Jk) =L~,J -k) is the gluon propagator in momentum space defined by 

0J k) Sah = c W$)Ob( x)exp( -ik *x) . 
x 

In fact, all higher point correlation functions vanish at all external momenta 
k = 0.1 
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Theorem 5.1. In the infinite-volume limit, the zero-momentum lattice gluon 
propagator vanishes in a minimal Landau or Coulomb gauge, 

lim 0(O) = 0, 
L-r- 

(5.1) 

together with all higher point correlation functions at zero momentum. 

The vanishing of the gluon propagator at k = 0 in the Coulomb and Landau 
gauges means that there are no massless gauge quanta in these gauges. However 
for this it is sufficient that the propagator does not have a pole at k = 0. The 
vanishing of the propagator at k = 0 is a stronger condition which has drastic 
consequences. 

Theorem 5.2~. In a minimal Coulomb gauge the strong (norm) limit holds. 

/iyl PQqt,x)n~~=o. 
II x 

(5.2) 

Here R is the quantum mechanical vacuum state, A(t, x) is the minkowskian field 
operator in the Coulomb gauge, euclidean space-time is of D + 1 dimensions, the 
previously suppressed time variable t has been resurrected, and x is the D-dimen- 
sional spatial variable of the previous section. Roughly speaking, this theorem 
states that in a minimal Coulomb gauge the zero-spatial-momentum component of 
the gluon field annihilates the vacuum. 

Proof. The two-point correlation function in the Coulomb gauge which we 
have been considering is in a single time slice, so it is identical to the equal-time 
minkowskian vacuum expectation value 

0(k) = C(n,A(t,x)A(t,O)~)exp(ik.x), (5.3) 

where indices are suppressed. In particular, for k = 0, one has, by translation 
invariance, 

0(O) = (a CA( * t,x)A(r,o)n) =P(q ywp). 

Thus, from lim,,, 0(O) = 0 the assertion follows. n 

Note that the vanishing of a zero-momentum state is not a relativistically 
invariant concept, and if it holds also in the continuum limit, it would imply that 
the vacuum is annihilated by all momentum components of the gluon field in a 
minimal Coulomb gauge. For the equal-time propagator of a free field of mass A4 
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at zero spatial momentum, one has 

LB(O) =L-‘C[k,2+M*]-l~(2M)-I, 
ku 

so the vanishing of this quantity in a Coulomb gauge means that Coulomb-gauge 
gluons have an infinite effective mass. 

Theorem 5.2b. In a minimal Landau gauge, either reflection positivity is vio- 
lated or the zero-spatial momentum component of the gluon field annihilates the 
vacuum. 

Proof. Consider MO) at finite volume, 

9(O) =L-D+l ~(B(t)B(O)), (5.4) 

where we have written x = (t, x), used translation invariance, and introduced 
B(t) = C,A(t, x), which is a finite sum for a finite lattice. To check reflection 
positivity, it is convenient to label the reflection plane by c = 0, and time-slices 
containing sites of the lattice by t = f l/2, f 3/2.. . . Use translation invariance 
again to rewrite NO) as 

B(O) = 2-‘CD+‘( {2B2(1/2) +B( -1/2)B(1/2) +B( -3/2)B(3/2) 

+[B(-l/2) +B(-3/2)][B(1/2) +B(3/2)] + . ..}). (5.5) 

The first term is positive and every other term in this sum is positive if reflection 
positivity holds. Thus, if reflection positivity holds, each term must vanish in the 
infinite-volume limit, and we have, 

lim LeD+‘( B( t)B(O)) = 0. 
L+m 

(S-6) 

This is the Coulomb case with D + D - 1. n 

Of the two alternatives, one naturally takes reflection positivity to be violated 
because it is established only for gauge-invariant objects [6], and the other 
alternative is too strong. The surprise is that the violation of reflection positivity is 
maximal, since the vanishing of C,(A(x)A(O)) means that (A(x is positive 
and negative in equal measure. 

Reflection positivity implies both that there is a positive quantum mechanical 
inner product and that the spectrum of the hamiltonian is real and positive. Since 
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it is violated in the minimal Landau gauge, either or both of these consequences 
may fail to hold. The methods of proof used here do not establish which of these 
alternatives holds. In appendix C we consider a crude model with support inside 
the Gribov horizon, which may approximate lattice gauge theory in the Landau 
gauge. It is found that the mass is complex with positive real part. Thus the gluon 
is an unstable particle in this model. 

[We would like to comment on whether the propagator vanishes at k = 0 in the 
continuum limit. All the above bounds hold for all values of the lattice spacing, so 
they are satisfied in the continuum limit. However it may happen that they are 
trivially satisfied by W(J) = 0 in the continuum limit, because IV(J) is the generat- 
ing function of the unrenormalized Green functions. To obtain a bound on the 
generating function of the renormalized Green functions one replaces J by 
J/Z1’2, where Z1/2 is the renormalization constant of the connection 

g,A, = Z”2g,A,, (5.7) 

and the subscripts 0 and r refer to unrenormalized and renormalized quantities. 
The bound (3.12) becomes a bound on the generating function of renormalized 
connected correlation functions given by 

W,(J) G ~lj~(k)luF(k)Z-1’2. (5.8) 

Thus, if Z approaches zero in the continuum limit, obviously no conclusion 
concerning the renormalized correlation functions can be drawn without further 
consideration. In space-time with dimension D less than 4, the renormalization 
constant is believed to be finite, which implies that the renormalized continuum 
propagator vanishes at k = 0. In 4-dimensional QCD, if Z is calculated according 
to the perturbative renormalization group, one does indeed find Z = 0, and so the 
bound (5.8) is trivially satisfied in continuum QCD in 4 dimensions, and the 
behavior of the renormalized propagator cannot be determined by the present 
method. The issue of renormalization in 4 dimensions will be addressed in the 
future [173*. 

Although the derivation presented here relied on periodic boundary conditions, 
the proofs may be extended without change to any boundary conditions which 
preserve translational invariance such as, for example, anti-periodic boundary 
conditions. 

Physical observables are gauge invariant. On the lattice, gauge-invariant quanti- 
ties are Wilson loops which are products of the link variables U. Recall that the 
lattice variables A(x), defined in eq. (2.12), are components of the link variables 

*It appears that the low-energy bounds obtained in the present article hold for the renormalized 
propagator. However high-energy bounds implied by the ellipsoidal bound are modified by 
renormalisation. 
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U(x) which are elements of the Lie group and not of the Lie algebra. As such the 
A(x) are not elements of a linear space (although we have been considering linear 
bounds on them) and consequently they cannot be renormalized multiplicatively. It 
should be possible to take the continuum limit of expectation values of the lattice 
gauge-invariant objects directly, without ever introducing renormalized fields.] 

6. Conclusion 

We have learned that the lattice gluon propagator vanishes at zero momentum 
in a minimal Landau or Coulomb gauge, but the degree of its zero has not been 
established. Does it vanish like k2 at low k, as suggested by the model of appendix 
C, namely B(k) = k2/y? This could be investigated by numerical evaluation of 
the Fourier components of the gluon propagator. If it does, then, in the continuum 
limit, the coefficient of k2 determines a constant of dimension (mass)4. From the 
discussion in sect. 5 one would expect that in the Coulomb gauge this constant 
would approach infinity, whereas in the Landau gauge it could be finite, and scale 
according to the perturbative renormalization group. If so, one has a mechanism 
for mass generation in QCD which may be understood as originating in the 
suppression of infrared components by the lattice Gribov horizon. 

By simulations on lattices of different volumes, one could also determine for a 
fixed mode, for example k = 0, the dependence on the volume. On a lattice of 
edge L, does 0,<0> vanish like (2,rrL-‘)‘? 

One may attempt to verify the hypothesis, proposed in the introduction, that 
confinement of gluons may be understood in the Landau gauge if the gluon has a 
complex mass, as suggested by the maximum violation of reflection positivity. To 
verify this, one may calculate numerically the gluon propagator at large separa- 
tions. The quantity 0(t) = C,0(t, x) may behave as in the model of appendix C, 
namely, asymptotically at large t like 

0(t) -const.Xexp( --mt)cos(mt+7r/4), (6-l) 

or more generally like 

0(t) - const. X exp( --m,t)cos( m,t + ‘p) . (6.2) 

To be relevant for physics, mass parameters must scale in accordance with the 
perturbative renormalization group. 

It is possible that such behavior is easier to observe numerically in the gauge 
that is fixed at the absolute minimum of the action S,(g), which is represented 
analytically in eq. (14). For this purpose one may numerically obtain the required 
gauge transformation g for any given configuration U by defining an ensemble on 
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the gauge orbit of U by means of the Boltzmann factor 

exp[ -M’S,( g)] = exp[ -M2SL<UR)] , (6.3) 

where S,(U) is the link action defined in eq. (2.2). The absolute minimum on the 
orbit of U is achieved by equilibrating the site variables g numerically, and 
adiabatically cooling the system to zero temperature, which corresponds to letting 
the parameter j3 = M2 approach infinity. 

One may also evaluate the quark propagator numerically in a minimal Landau 
gauge, to see if it also has a complex mass which scales according to the 
perturbative renormalization group. If both the quark and gluon have this behav- 
ior, then the hypothesis proposed in the introduction will have been verified, and 
the confinement of colored particles can then be attributed to the instability 
described by a complex physical mass which arises because colored particles are 
created by gauge non-invariant colored fields which violate reflection positivity. On 
the other hand, color singlet particles, created by local gauge-invariant fields, are 
stabilized by reflection positivity which insures that they have a real mass. 

The author recalls with pleasure many stimulating discussions with Richard 
Brandt, Frank Brown, Gianfausto Dell’Antonio, Stefano Fachin, Sergio Fanchiotti, 
Claudio Parrinello and Alan Sokal. 

Appendix A. Variational bound on Fourier components 

We shall use a trial wave function and exploit the positivity of the operator 
K(A) defined in eq. (2.15) to prove a simple bound on the Fourier components of 
the lattice gluon field A(x) in a minimal Landau or Coulomb gauge. We write 

where 

K=K,+K,, (A.la) 

(K+J)‘(x) = -A2d(x) =2&(x) -d(x+e,) --‘(x-e,), (A.lb) 

(K,o)‘(x) =(1/2)f”bc~[-,4~(x)oC(x+e,) +Ai(x-e,)oC(x-e,)}. 
P 

(A.lc) 

We extend K to an operator on complex wave functions in order to use plane-wave 
states. We shall also make use of the lattice Fourier transform of A 

At(x) = V-‘Ca~(k)exp[ik.(x+e,/2)], 
k 

(A-2) 
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where k, = 2m,/L, and n, is an integer in the interval -L/2 <n, G L/2. In 
terms of the Fourier components, transversality is simply 

Csin(k,/2)ai(k) =O. 
P 

(A4 

The matrix elements between normalized plane-wave states are given by 

(4, &,lk,,c) = Sac6k,vk2~k,, (A.4a) 

(ki,alKilkz,c>= -iV-‘f”bcCsin[(k,,+k,,)/2]a~(k,-kz), (A4b) 
c1 

where A, = 4C,sin2(k,/2). 
We will use some simple trial functions to bound the Fourier components of 

A(x). First take 

lo) = L&x) = Ik,>lx>. 

Here Ix> is a normalized color vector, Ik > is a normalized plane-wave state of 
momentum k, and k, is one of the 20 vectors 

k, = + 2re,/L, (ASa) 

where e, is a unit vector in the p-direction. We have 

(w,Kw) =A,-iV-‘x’*f’6C~sin(k~)u~(0)~c, 
P 

where 

A, = Ako = 4sin2( r/L). ( ASb) 

For the SU(2) group, (Sb),, = ifobc are the angular momentum operators in the 
spin-one representation and so, for any color vector ub, the eigenvalues of the 
operator Sbub are 0 and flul. Hence by choosing k, to lie along the p-axis, and x 
to be an eigenfunction of highest or lowest weight, we obtain from the positivity of 
K(A) 

A,-V’sin(2rr/L)]u,(O)]>O, 

which holds for each CL. This gives the bound 

la,(O)1 Q 2tan(r/L)V= a(O)v. (A-6) 



150 D. Zwanziger / Lattice &on propagator 

In fact, this bound holds for every SU(N) group because the highest weights are 
the same in the adjoint representation of any SU(N) group. 

To obtain a bound on other Fourier components, choose a trial wave function of 
the form 

I@> = Ik,,Xo) + alk,x) 9 

where cr is a complex variational parameter. We have 

O,<(W,KU) =A,+ IcY12Ak 

- V-‘C[sin(k,,)(x,,S.u”(O)~,) + I~12sin(k,)(x,S.a,(0)x) 
” 

By the bound on a(O) and transversality, we have 

0<2A,+ IcyI A,+ CIsin(k,)12tan(rr/L) 
1 ” 1 

- 4V’ c sin( k,,/2)cos( kJ2) Re[ a(Aa, S 9 a,( k, - k),y)] . 
Y 

The second sum on v has only one non-zero term because k,, has only one 
non-zero component, say along the p-axis. Choose x and x0 to be eigenvectors 
with minimal or maximal weight for S. u,( k, - k), and obtain 

A, + ~lsin(k,)l2tan(~/~) 
v I 

f 41/-l sin( r/L)cos( k,/2)( Re a) 1 a,( k, - k) I. 

By appropriate choice of the sign of CY we obtain 

A,f zIsin(k,)12tan(r/L) 
Y 1 

which holds for all real p. Upon minimization with respect to p, one has 

1 uJ k - k,) I2 Q 2cosm2( kJ2) A, + c 1 sin( k,) 12 tan( r/L) V2. 
Y I 
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For the SUGV) group this holds for each color index, and we have proven: 

Theorem A. 1. In a minimal Landau or Coulomb gauge, the Fourier compo- 
nents a(k) of the lattice field A(x), defined by eqs. (2.12) and (A.2), satisfy the 
bound 

[o;(k)]2=2cos-2[(k+k,),/2] hk+k,+ C]sin[(k+k,)V]]2tan(rr/L) . 
[ Y 1 

(A-%) 
where k, may be any one of the vectors f2reJL. 

By comparison with the bound (A.6), we see that this also holds for k = 0. In the 
infinite-volume limit with fixed k, a;(k) is given by 

[o,(k)]2=2hkcos-2(kp/2). (A.81 

These bounds are weak when the cos(kJ2) is small. However we may obtain 
another bound on a(k) from the unitarity of U. We write 

U,(x) = Ct”C”+R, 
a 

where tr(t”R) = tr(t”R+) = 0. From the definition of A, eq. (2.12), we have 

A;(x) = ReC”, 

and from 

tr[LG(x)L$t(x)] =N=(1/2)~lCa12+tr[RtR], 
a 

one obtains, C,[ Af$x>12 Q 2N, 

IA,(x)~<(~N)“~. (A-9) 

Thus unitarity of V,<x> implies the bound on the Fourier coefficients 

1 a,(k) 1 Q (21V)“~v. (A.lO) 
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We may combine these two bounds as 

where 

la#)l qyc)K 

a;(k) =min[o;(k),(2N)“2]. 

(A.lla) 

(A.llb) 

Appendix B. Ellipsoidal bound 

An ellipsoidal bound on A, which holds for all minimal lattice Landau and 
Coulomb gauges, will be proven from the positivity of KU). The result is stated as 
theorem B.1 below. 

B.l. VARIATIONAL INEQUALITY 

Let P be any real positive symmetric matrix. The positivity of K(A) implies 

For P we take 

tr(KP) 20. (B.1) 

Here K, and K, are defined in eq. (A.0 P,, is the projector onto the eigenspace 
of K, belonging to one of its eigenvalues A,, and CY is a variational param- 
eter. This form for P is inspired by first-order perturbation theory, according to 
which the first-order change in an eigenvector I&, is given by JI, = -[Cl -PO)/ 
(K, -A,)IK,$,,; b u we shall of course obtain an exact, non-perturbative varia- t 
tional bound. Substitute eq. (B.2) into the inequality (B.l) and obtain 

where 

X=tr[(K,+K,)P,], (B.4a) 

y= trpw -PM& - 4l)lw5J} Y (B.4b) 

z~tr((~,+~,)[(1-P,)/(~,-~,)l~,P,~,[(1-P,)/(~,-~,)lJ. WC) 
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Here we have used Pa&(1 -PO> = 0 to simplify Y. Positivity of I(a) for all CY 
implies 

x20, z,o, P-5) 

Y2 <xz. P.6) 

B.2. BOUND ON K 

The following lemma will be useful: For the SU(N) gauge group and for all A 
in 0, i.e. A such that K(A) is a positive operator, K(A) is bounded from above by 

(w,Kw) =(o,(K,+K,)w)~N2(W,Kow). P.7) 

We first derive the lemma for the SU(2) group. We write 

K” = SbHb 
1 3 (B-8) 

where (S”),, = ifabc are the angular momentum operators in the spin-one repre- 
sentation, and Hb is a hermitian operator that acts only on spatial variables, but 
not on color variables. We shall first bound the operator 

(K&c = (S3>,,H3. P.9) 
The spin-one operator S3 has eigenvalues 0 and f 1. Let w:(x) be the product 
wave function 

w”,(x) =e$v(x), (B.lOa) 

where C&X) is any function of x, and e, are the normalized highest and lowest 
weight eigenvectors of S, satisfying 

We have 

S,e,= +e,. (B.lOb) 

where we have use the fact that ( f IS’ I + ) = ( + IS21 f > = 0 in the highest 
weight states because S’ and S2 may be expressed in terms of raising and lowering 
operators, and the inequality holds because K = K(A) is a positive operator for A 
in 0. This gives 

which holds for any spatial wave function rp. It follows that for any wave function 
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o which is a color vector 

since we may expand w into eigenstates of S3. This inequality holds for S’H’ and 
S*H* also, from which we conclude, for the SU(2) group 

For the SU(N) group, the proof is identical except that there are N* - 1 terms 
in K,. This gives 

I@, K,w) I(N* - l>(u> QJ) . 

and the lemma is established. 

B.3. EVALUATION OF THE INEQUALITY 

Note that 2 is of the form 

Z=tr(KQ)=tr[(K,+K,)Q], (B.ll) 

where Q is a positive operator. From inequality (B.7) we have 

Z=tr(KQ) dN*tr(K,-,Q) =N*Z,, (B.12) 

which gives the simpler bound 

Y2<N2XZo. (B.13) 

Let us now evaluate this expression for the operators at hand. Note that both K, 
and K, have a trivial null space X0 consisting of constant wave functions. 
A,w”(x) = 0, where A,o”(x) = C/(X + e,) - o’(x). Since z,-, is annihilated by 
both K, and K,, it shall be understood henceforth, without loss of generality, that 
K, and K, act on the subspace orthogonal to X0. To obtain an interesting bound, 
we choose PO to be the projector onto the next-lowest-lying eigenspace of K, = 
-A*, which belongs to the eigenvalue A, = 4sin*(rr/l). It consists of wave 
functions of the form 

u”(x) = va exp( ik, *x) , (B.14a) 

where v’ is an x-independent color vector, and k, is one of 2 D momentum 
vectors (pointing in positive and negative directions along the D principal axes> 
that satisfies 

hko = A, = 4 sin*( 7r/L) . (B.14b) 
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Because the dimension of the adjoint representation is N2 - 1, one has 

155 

trP,=2D(N2-1). (B.15) 

It is convenient to express X, Y and Z by saturating with momentum eigenstates, 
which gives 

y= c (k,,blK,Ik,c)[l/(h,-h,)](k,clK,Ik,,b), k,k, 
z,= c (k,,blKlIk,c)[hk/(h,-h,)2](k,cl~~lk,,b). k.k, 

Here repeated color indices b, c are summed over, k, is summed only over values 
satisfying A& = A,, and k is summed subject to the restriction A, > A,. One 
obtains from eqs. (A.2)-(A.4), 

X= c A,abb=2D(N2-l)A,,, 
k,,b 

y=hqr2 c 4sin2(k,,/2)[n~(k,-k)n~(k -k&os2(k,/2)/(Ak -A,)], k,k,.p,b 
z,=Nv-2 c 4sin’(k,,/2)[ ui( k, - k)ai( k - k,,)COS2(k,/2)A,/( A, - A~)‘] 

k,k,,p,b 

(B.16) 

We have used CbTd f bcdf deb = -NV, where N is the value of the Casimir 
operator in the adjoint representation of SU(N). The proof may be extended to 
any semi-simple group since for such groups the Casimir operator is strictly 
positive. 

Observe that if the edge of the lattice has length 

L,4, (B.17) 

then A, > 2A,, so the positivity of the summands of Y and Z, yields 

Z” Q 2y, (B.18) 

and the inequality (B.13) implies Zi G 4N2XZ, or 

Z, Q 8DN2( N2 - l)A,. (B.19) 
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By a change of summation variables, Z,, may be written 

where 

$-2(k) E 2-l c’ cos2[(k + ko)ll/2]Ak,.k,,/(Ak+k,, - A,,)*~ (B.2Oa) 
kl, 

and we have used the fact that k,, has only one non-zero component. In this 
expression, k never vanishes, k,, is summed only over the two values 

k,, = f (2r/L)e,, 3 (B.20b) 

and the prime on summation sign means that a term is dropped if each denomina- 
tor is not strictly positive. The ellipsoidal bound is established: 

Theorem B.l. In a minimal Landau or Coulomb gauge, the Fourier components 
a(k) of the lattice gluon field A(X), defined by eqs. (2.12) and (A.2), lie in the 
ellipsoid defined by 

c a;(-k)n;(k)/v;(k) <4DN(N*- 1)V’. 
k,P*,b 

(B.20~) 

The semi-major axis of the ellipsoid is very large when cos(kJ2) is small, 
however, n(k) is independently bounded by eq. (A-11). 

Appendix C. A simple model 

In this appendix we consider a simple lattice model which is defined by the 
free-field action on a euclidean lattice, 

S,,(A) = (2V)-’ ca’( k)A,. 
k 

(C-1) 

By analogy with the rigorous ellipsoidal bound obtained in appendix B, we suppose 
that the classical configuration space A is the ellipsoid in A-space given by 

S,(A) = (2V)-’ &‘( k)v;* < cV. 
k 

(C-2) 

Consider the generating function 

Z(J) EN/T da(k)B(cV-S,(A))exp -p&(A) + V-‘zj(k)a(k) , (C.3) 
k 1 
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where the normalization constant N is chosen such that ZIO] = 1, and 
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p E g;*a-, (C-4) 

where a is the lattice spacing. We shall show by direct evaluation that in the 
infinite-volume limit, it is given by 

Z(J) =exp (2p)-‘(2~)-~/~ dDkIj(k)12[A,+yv,*]-’ . 
i i 

(C-5) -77 

One recognizes that Z(J) is the generating functional of a free field with kinetic 
energy A, + yvk*. Here y is a thermodynamic parameter whose value is uniquely 
fixed by 

c=(2@-‘(2~)-~/~ dDk[v;h,+y]-‘. 
-l7 CC.61 

To evaluate Z(J) we write 

Z(J) =N(2~i)-‘~do(w-ie)-‘exp(iopcV) 

X/F da(k)exp -p{&(A) -itiS,( + V-‘zj(k)a(k) . (C.7) 
k 1 

With 

S,‘(A) +iwS,(A) = (2V)-‘Ca*(k)[Ak+iWVk*], 
k 

integration over the a(k) is easily evaluated by gaussian quadrature, 

Z(J) =N(2~~)-‘~dw(w-ie)-‘exp(iwpcV)~[A,+iwv,*]-”* 

(2pl/)-‘CIj(k)1*[h,+iou,* 
k 

(C-8) 

(The normalization constant N is redefined, to maintain Z(0) = 1, as shall be done 
again without further comment.) 

The contour of integration may be deformed into the lower half complex 
w-plane, where the integrand is an analytic function. To find a saddle point there, 
we write, with z = io, 

Z(J) =N(2rri)-‘/drexpF(r)exp((2V)-i$[j(k)li[h’}, (C.9) 
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where z satisfies Re(z) > 0, the integration is parallel to the imaginary axis, and 

F(z)= -lnz+PcVz-2-‘Cln[A,+zv,‘]. (C.10) 
k 

The critical points z = y of F(z) are determined from 

F’(y)= -y-‘+pcV-2-‘C[v;An+y]-‘=0. (C.11) 
k 

or 

c=(2pI/)-‘~[v:l\,+y]-‘+(pyv)-‘, (C.12) 
k 

(We have ignored the term containing j’ in the search for the critical point 
because Green functions are obtained by setting j = 0, after differentiating with 
respect to j.) There are no roots for y complex. For y real and positive, the 
right-hand side is a monotonically decreasing function of y which ranges from Q) to 
0, which gives a unique value for y. As V grows, the first term approaches a finite 
integral. If c is less than the critical value 

. 
then y approaches a finite value as V + 03, the last term in eq. (C.12) becomes 
completely negligible, and eq. (C.6) follows. In the cases of interest, namely D =z 4 
with h, = V: = 4C sin’(k,/2), cg is infinite, so obviously c < cO. (If c exceeds co, 
then y approaches zero in the infinite-volume limit and the restriction to the 
interior of the ellipsoid becomes vacuous.) 

To prove that contributions away from the saddle point are negligible, we pose 
z = y + iy. The path of integration is -UJ < y < + 03. Observe that in eq. (C.91, the 
dominant factor in the integrand exp F(z) may be written 

exp rpc - 2-‘(21~)-~/‘i dDk ln(A, +zvi’) , 
-T 

with z = y + iy. When y is different from zero the real part of the quantity in 
brackets is less than at y = 0. Because this factor is multiplied by the enormous 
number V which appears in the exponent, the contribution away from y = 0 is 
negligible. 

The second derivative at the critical point is given by 

F”(Y)=y-2+2-‘C[Y:hn+y]-2, 
k 
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At large volumes it is given by 
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where 
F”(y)=FE+O(l), (C.14a) 

(C.14b) 

To second order in the Taylor series expansion for F(y + iy) we have 

F(y+iy) =F(y) -$5y2. (C.15) 

The peak becomes very narrow, at large volume, and the saddle-point approxima- 
tion becomes exact in the infinite-volume limit. By integrating over z in eq. (C.9) 
along the contour z = y + iy, where --m < y < 00, the stated result, eq. (C.5) 
follows, and y is the unique solution of eq. (C.6). This completes the evaluation, 
and we now discuss the result. 

The generating function (C.5) corresponds to the gaussian measure 

dw =NF WWexp( -PW))y (C.16a) 

where 

S(A) = So(A) + rS,(A). (C.16b) 

Note that eq. (C.12), which determines y, may be written (with neglect of the last 
term which vanishes with V-‘) 

(S,(A)) =cv, (C.16~) 

where the expectation value refers to the measure (C.16a). This relation expresses 
the fact that the support of the measure which was restricted to the interior of the 
ellipsoid S&4)/V < c, in fact approaches the boundary of the ellipsoid S&4)/V= 
c, as V+ 03. This agrees with the elementary fact that the density in radius goes 
like I+~-’ for an N-dimensional ball, so the volume of a very high dimensional 
sphere or ellipsoid gets concentrated as its surface. 

The gluon propagator in position space corresponding to the generating func- 
tional (C.5) is given by 

0(~)=g,2(2rr)-~ld~k[h,+yuk~]-‘exp(ik..~), (C.17) 

where -r G k, G r. To see the mass spectrum, we sum this over a time-slice. 
With x = (t, x), t =x0, and 0(t) = C,0(t, x), we have 

0(t) =gi(2*)-‘/dBA(B)[h’(B) +y]-‘exp(iOt), 
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where we have specialized the model to ui = A,, and h(8) = 4sin2(8/2). This 
integral may be evaluated by contour integration around the unit circle, with the 
result 

B(r) =giRe(exp(ltllnz-)[2(z+-z-)1-‘), 

z*= 1 +i2-‘$‘2* [(l +i2-‘y’/Z)2- 1]“2. 

These roots satisfy z+z-= 1, with z- lying inside the unit circle, so p = lz- I < 1. 
With 

exp(ltlln z-) = exp[(ln p + ifp)ltl] = exp( -mltl) , 

we see that in this model the lattice gluon has a pair of complex masses 
m *= -In p f icp. The real part of the mass is positive, Re(m *> > 0, (because 
p < 1) as it must be for an exponential decay in the euclidean domain. However, 
because of the imaginary part, the gluon also decays in the minkowskian domain 
and is thus an unstable particle. For y to be finite in the continuum limit, one 
must have y -K 1, in which case one obtains in the continuum limit 

9(t) =g;2-“2(4m)-’ exp( -mt)cos( mt + r/4), (C.19) 

where m = 2-1/2y’/4. 
Finally we consider the continuum limit of eq. (C.6) which determines y, 

(C.20) 

For D < 4, this integral converges, and the coupling constant g is dimensional, as 
is y. In this case, condition (C.20) may be used to solve for either y(g,) or g,(y), 
so either may be used as the independent parameter. For D 3 4, the integral 
diverges as the ultraviolet cut-off is removed, and there is no cut-off independent 
meaning for the original measure. In D = 4 euclidean dimensions, the integral 
(C.20) diverges logarithmically, and the theory may be defined as the limit of the 
theory for D < 4. If one keeps y fixed at a finite value as the cut-off E = 4 -D 
approaches zero, one obtains [lo], 

g,2 N const . X E . (C.21) 

The dependence on the cut-off E agrees with asymptotic freedom and the pertur- 
bative renormalization group. 
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Finally we observe that if a mass M were introduced into S,, to model, however 
crudely, a mass of Higgs origin, then one would obtain the continuum propagator 

with poles at 

k*= -(M*/2)f [(44*/2)*-yl1’*. 

Depending on the value of M, there are either a pair of complex conjugate poles 
or a pair of real poles. In the latter case the heavier mass has a positive residue 
and could represent a weak boson. The lighter mass has negative residue and must 
decouple from the physical space. 
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